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ABSTRACT

This grant began in June of 1996. Its long term goal is to be able to control the
microstructure of directionally solidified eutectic alloys, through an improved understanding of
the influence of convection. The primary objective of the present projects is to test hypotheses
for the reported influence of microgravity on the microstructure of three fibrous eutectics (MnBi-
Bi, InSb-NiSb, AI3Ni-A1). A secondary objective is to determine the influence of convection on
the microstructure of other eutectic alloys.

Two doctoral students and a masters student supported as a teaching assistant were
recruited for this research. Techniques were developed for directional solidification of MnBi-Bi
eutectics with periodic application of current pulses to produce an oscillatory freezing rate.
Image analysis techniques were developed to obtain the variation in MnBi fiber spacing, which
was found to be normally distributed. The mean and standard deviation of fiber spacing were
obtained for several freezing conditions. Eighteen ampoules were prepared for use in the
gradient freeze furnace QUELD developed at Queen's University for use in microgra'city. Nine
of these ampoules will be solidified soon at Queen's in a ground-based model. We hope to
solidify the other nine in the QUELD that is mounted on the Canadian Microgravity Isolation
Mount on MIR.

Techniques are being developed for directional solidification of the A1-Si eutectic at
different freezing rates, with and without application of accelerated crucible rotation to induce
convection.

For the first time, theoretical methods are being developed to analyze eutectic
solidification with an oscillatory freezing rate. In a classical sharp-interface model, we found
that an oscillatory freezing rate increases the deviation of the average interfacial composition

from the eutectic, and increases the undercooling of the two phases by different amounts. This
would be expected to change the volume fraction solidifying and the fiber spacing. Because of
difficulties in tracking the freezing interfaces of the two solid phases, a phase-field model is also
being developed. A paper demonstrating application of phase field methods to periodic
structures has been submitted for publication.



INTRODUCTION

Prior experimental results on the influence of microgravity on the microstructure of
fibrous eutectics have been contradictory [reviewed in 1,2]. Theoretical work at Clarkson

University showed that buoyancy-driven convection in the vertical Bridgman configuration is not
vigorous enough to alter the concentration field in front of a growing eutectic sufficiently to
cause a measurable change in microstructure [3-9]. Currently, there are three hypotheses that
might explain the observed changes in microstructure of fibrous eutectics caused by convection:

i. A fluctuating freezing rate, combined with unequal kinetics for fiber termination and
branching.

2. Off-eutectic composition.
3. Presence of a strong habit modifying impurity.

We favor the first of these hypotheses. Previously we had performed ground-based experiments
using electric current pulses to deliberately create an oscillatory freezing rate [1,2]. Although
current pulsing coarsened the microstructure of MnBi-Bi eutectic as predicted, it may also have
introduced localized convection. Current pulsing experiments in microgravity are needed to
fully test this hypothesis.

Experimental and theoretical research is being carried out in collaboration with Professor

Reginald Smith of Queen's University. He is a senior metallurgist with extensive experience in

eutectic solidification, including the two systems being investigated here: MnBi-Bi and AI-Si.

Through the support of the Canadian Space Agency, he has two automated furnaces located in

the Canadian Microgravity Isolation Mount (MIM), in Prirorda on Mir. MIM can be used not

only to greatly reduce acceleration, it can also be used to introduce accelerations of any desired

amplitude, frequency and direction. Recent experiments have shown unexpected sensitivity of

diffusion to normal microgravity g-jitter [10,11]. Thus it would be very instructive to perform

eutectic solidification experiments in microgravity with controlled accelerations applied, either

using MIM or McDonnell-Douglas's STABLE.
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THE INFLUENCE OF A FLUCTUATING FREEZING RATE ON DIRECTIONAL

SOLIDIFICATION OF THE MnBi/Bi EUTECTIC

Fengcui Li

Abstract

The objective of this project is to determine the effect of a fluctuating freezing rate on the

microstructure of the MnBi/Bi eutectic. It was planned that this would be done via both space

experiments and ground-based experiments. The space experiments were to be carried out in

collaboration with Professor Reginald Smith of Queen's University. Through the support of the

Canadian Space Agency, he has two automated furnaces located in the Canadian Microgravity

Isolation Mount (MIM), in Prirorda on Mir. At Clarkson, ground-based experiments are being

performed with a fluctuating freezing rate caused by passing periodic electric current pulses

through the material. Experiments will be carried out soon at Queen's University using

duplicates of the flight samples in a copy of the flight furnace, QUELD. Eighteen special small

diameter ampoules were prepared and delivered to Professor Smith. Because of the many

problems with Mir, flight of our experiments is now awaiting the negotiation of a new agreement

between the Canadian Space Agency and the Russian government.

The eutectic microstructure is photographed using Scanning Electron Microscopy (SEM),

and the microstructure images analyzed by special image analysis software that we do not believe

has been used before in such an application. The result is a histogram of the distribution of

nearest neighbor MnBi rod spacings. Cumulative distribution plots demonstrate that this rod

spacing is normally distributed.

A draft research proposal by Ms. Li for her PhD qualifying examination is nearly

complete. There has been an introductory meeting with the examining committee.

INTRODUCTION

The MnBi/Bi eutectic has potential for use in the production of permanent magnets. It

provides a fine dispersion of ferromagnetic MnBi embedded in a diamagnetic Bi matrix. Regular

arrays of MnBi rods are aligned with their easy axis of magnetization parallel to the growth

direction in the Bi matrix. Moreover, MnBi/Bi eutectic is considered a useful model system to

study the crystal growth, because its microstructure and magnetic properties strongly depend on

the solidification parameters.

The average MnBi fiber spacing _ depends on the freezing rate V such that _,2V = const.

In the 1980's, Larson and Pirich at Grumman found that _, of MnBi/Bi solidified in microgravity

was reduced to about half the value when it is solidified on earth [reviewed in 1,2]. However, a

more recent flight experiment by Smith showed no influence on the microstructure of MnBi/Bi

eutectic. Previous investigations here showed that the influence of buoyancy-driven convection

and the Soret effect on mass transport are not enough to explain the difference between the earth-

and space-processed [3-9]. We proposed that freezing rate fluctuations caused by irregular

convection increased _ on earth because MnBi fibers are terminated more easily than they

branch. We also proposed that the difference between the results of Larson and Smith resulted

from the different temperature profiles of their experimental apparatuses. The thermally unstable

condition of Larson's furnace is believed to have caused time-dependent convection, temperature

fluctuations and freezing rate fluctuations. (They observed temperature fluctuations via

thermocouples in the melt.) Smith used a thermally stable gradient-freeze furnace.



The objective of the current project is to experimentally determine the influence of a

fluctuating freezing rate on the microstructure of the MnBi-Bi eutectic. Ground-based

experiments are being performed at Clarkson using periodic electric current pulses applied

during solidification. Electric current pulsing is a good technique to cause rapid freezing rate

fluctuations, hopefully with minimum changes to the convection. In preliminary experiments,

we demonstrated that the MnBi fiber spacing increased as both the current amplitude and

duration were increased at one particular freezing rate [ 1,2]. We are now investigating a range of

freezing rates and current pulsing conditions.

We plan to perform experiments soon at Queen's University on a duplicate of the

QUELD gradient-freeze apparatus that is located on the Canadian Microgravity Isolation Mount

(MIM) on Mir. Perturbations will be induced in some of the 9 experiments by orienting the

apparatus horizontally during solidification or by periodically striking the apparatus. Ultimately,

we hope to perform solidification experiments on MIM in space, under three conditions: without

vibration damping, with vibration damping, and with known oscillations applied by MIM.

(Diffusion studies have shown that g-jitter on the Shuttle and on MIR are sufficient to increase

the apparent diffusion coefficient compared to the vibration-damped condition [10,11].) The

problems on MIR have prevented our samples from being run, and we must now await the

negotiation of a new agreement between the Canadian Space Agency and the Russian authorities.

EXPERIMENTAL METHODS, RESULTS AND PLANS

Current pulsing experiments

The experimental procedure is as follows. The ampoules used for homogenization are 9

mm ID × 11 mm OD quartz tubes, sealed by 8 mm OD quartz rods on both ends. The ampoule

was alternately evacuated to 10 .6 torr and filled with a mixture of argon and 10% hydrogen, and

then sealed at 10 .6 torr. The eutectic was homogenized in the gold-coated rocking furnace at

670°C for 36 hours.

The growth ampoules are 4 mm ID X 6 mm OD quartz tubes (with 9 mm ID X 11 mm

OD top parts), and 900 mm long in order to fit the furnace. Molybdenum wire is used to carry

the electric current for the current pulsing experiments since it is not soluble in bismuth. The

charge is about 20 g, and the ingot length is about 15 cm.

A Bridgman-Stockbarger furnace is used for the solidifications. The temperature in the

hot zone is set at 650°C and the cold zone at 250°C. A current amplitudes of about 0, 1, 5 and 9

A is used, i.e. 8.0, 40 and 72 A/cm 2. The period is 2s, 6s or 40s. The duration time is about

12.5%, 25% and 50% of the period time. Some experiments are performed either with no current

or with current applied continuously. The translation rate, which is approximately the freezing

rate, is 1, 2 or 5 cm/hr. For most ingots, no current is used during the first 6 cm, 9 A for 3 cm,

5A for 3 cm and 1A for 3 cm. Ampoules successfully solidified to date are shown in the table at
the end of this section.

Each ingot is cut into 8 mm thick cross sections, which are mounted in epoxy, ground,

polished and etched. The microstructure is recorded as computer files using scanning electron

microscopy. For each sample, 20-25 images from different positions of the sample are saved and

subsequently analyzed by HI_,Image++ 97 software. By the Threshold and Blob Analyse

command, the edge between the rods and the matrix are found. Some images are not sharp

enough and are fixed manually using the image software. Each rod area and center coordinates

are obtained automatically by the computer. The results are exported to Excel. The rods are

sorted from largest to smallest. There are four items in the Excel table for each rod: its



identification number, area, and coordinates of its center. The distance of its center to that of the

nearest rod is calculated and stored. The average nearest-neighbor spacing is calculated and

defined as the rod spacing )_, along its standard deviation and total fraction of the area occupied

by MnBi fibers (area fraction). The nearest-neighbor values are used to generate a frequency

histogram, as illustrated in the graph shown later. The cumulative distribution is tested for

normalcy by a plot of nearest neighbor distance versus the standard normal cumulative

distribution function NORMSINV. A straight line, as illustrated in the graph on the last page of

this section, indicates that the nearest neighbor distance is normally distributed. The 50% value

on this plot is _, and the slope is the standard deviation.

QUELD experiments

The Queen's University flight fumace, QUELD, is a gradient freeze fumace designed to

hold one sample. The control temperature is lowered at a specified rate to cause directional

solidification. Eighteen ampoules were prepared for use with QUELD, 9 for ground-based

experiments and 9 for flight experiments. Each ampoule is 3 mm ID × 5 mm OD and 60 mm

long quartz tube, with its two end sealed by fusing in quartz rods. These 18 ampoules were

delivered to Professor Smith and we are now collaborating with him on selection of the

conditions for the 9 ground-based experiments. We believe some will be run vertically in a

thermally stable environment, and some horizontally to cause convection and a fluctuating

freezing rate. We are considering periodically tapping the furnace in order to cause the freezing

rate to fluctuate. This could be done either manually or by using a rotating cam or solenoid.



Overview of the experiments

No.

Charge(g)

cM.(wt_)
Ampoule

size(ram)

Ingot length

(cm)
Soak time

(hr)
Translation

rates

(cm/hr)
Current

settings*

EX1

Average

Standard

deviation

EX2 EX3 EX4 EX5 EX6 EX7

40.0 50.0 17.0 22.1 22.0** 20.8** 22.1"*

0.726 0.737 0.721 0.738 0.730 0.738 0.738

9 ID 9 ID 4 ID 4 ID 4 ID 4 ID 4 ID

11 OD 11 OD 6 OD 6 OD 6 OD 6 OD 6 OD

6.8 8.8 12.0 18.0 17.3 18.2

3.50

1.92

2.50

• 6.75,

4.09,

2.07, 0.83

No

current

3.25

1.88

leaked

oxidized

2.50

2.0

I=9A

t= ls

T= 2s

NO

current

2.75

2.10

I=0,9,5,

1A;

t = 0.75s;
T=6s

No

current

3.30

2.14

1=0,5,1,
9A;

t=ls;
T=2s

SEM Yes Yes Yes

analysis

Area 3% 3% 3.0,2.7,
Fraction 4.5,5.6%

4.6 4.5

li51ttm 1.021am

4.50

4.36

I=0,9,5,
1A

t = 0.5;

T = 2s;
constant
5A

* I: current amplitude t: current duration time T: period of the current pulses

** The charge was a 3mm OD ingot that had been solidified in a 3mm ID × 5mm OD quartz tube.

Explanation of the experiments

No.

EX3

EX5

EX6

EX7

Explanation

The crystal was solidified in four translating rates. The ingot lengths were 4.5, 3.0, 3.0,
2.0cm.

The crystal was solidified in five conditions. First 4cm long was grown without current

pulses. Then !=3.5cm at each current pulses. The last 3.3cm without current
1_=4.6cm with I=5A; 12=2.4cm no current;

13=3.7cm with I=IA; 14=2.2cm without current;
15=3.8cm with I=9A;

The last part was solidified without current

lt=3.3cm no current; 12=3.4cm with I=9A;

13=3.2 with I=5A; 14=3.2cm with I=IA;

15=2.8cm with I=5A constant current;

The last part was solidified without current
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MODELING OF EUTECTIC SOLIDIFICATION

WITH A FLUCTUATING FREEZING RATE

Dmitri Popov

Abstract

It was proposed in [1,2] that the kinetics of fiber branching differs from that for fiber

termination. This could explain why the fiber spacing _, is different when solidification is carried

out without freezing rate fluctuations caused by buoyancy-driven convection. The objective of

this project is to develop a theoretical model for the influence of freezing rate oscillations on

eutectic microstructure. We are unaware of any previous work in this area. Two different

numerical models were chosen to solve the problem:

One-sided model. This method is based on the solution of thermal and mass diffusion equations

separately in each phase and sewing the solution at the interface by appropriate boundary

conditions resulting from flux conservation. The equations in the bulk can be easily discretized

even in a very complicated geometry. The interfacial free energy cannot be calculated from the

model, but is formulated in the model ab initio. In this case, the dynamics of the interface is

controlled only by the change of field variables in the bulk, but not at the interface itself. A

fluctuating freezing rate was applied. The coordinate system was transformed to one moving

with the interface. The excess compositional undercooling was calculated for several eutectic

structures. It was found that the stationary solution always exists. The concentration at the

interface, averaged in the Jackson-Hunt fashion, oscillates with the same frequency as the growth

rate, but lags behind for sufficiently high frequencies. The frequency dependence of the average

compositional undercooling reveals a high-frequency cut-off, where it approaches the steady-

state value. The value of the high-frequency cut-off is proportional to the inverse diffusion time

connected with the lateral diffusion. The value of the liquidus slope at the eutectic point of the

phase diagram turns out to be important for the estimation of the excess undercooling buildup at
the interface.

Phase-field model. In order to be able to track the interface dynamics, and particularly the region

of connection of the three phases (liquid and two solid phases), we initially chose the phase-field

method. The governing equations were formulated using two phase-field parameters, functions

of temperature and concentration. First, the necessary accuracy in the calculations of the

concentration in the bulk of the phases was achieved in one dimension and one solid phase,

providing the correct solution for the interfacial region. A fluctuating freezing rate and

concentration ahead of the interface were obtained as a response to a temperature fluctuation at

the edge of the thermal boundary layer. The concentration also lags behind the interface velocity

fluctuation as in the one-sided model. A simple lamellar eutectic structure was recovered in a

constant temperature gradient. The interface shape and the composition field ahead of the

interface are in agreement with Jackson-Hunt speculations [ 12].

INTRODUCTION

In studying the influence of a fluctuating freezing rate on MnBi/Bi eutectic solidification,

a series of experiments were accomplished at Clarkson [ 13]. Fu and Wilcox [ 14-16] studied heat

transfer in the Bridgman-Stockbarger technique with a sudden change in translation rate. Both



experimentallyandtheoreticallythey showedthat that the freezingrate does not immediately
equalthe new translationrate,but ratherapproachesit asymptotically. In sucha situation,the
microstructureof MnBi/Bi eutecticalwayscorrespondedto the instantaneousfreezingrate,i.e.
themicrostructureadaptedmorequickly thanheattransferallowedthefreezingrateto change.

When the freezing rate V increases,the systemwants the MnBi fiber spacingX to
decreasein orderto maintainX2Vconstant. In fiber eutectics,this probablyoccursby branching
of existing fibers, perhapsby nucleationof anotherorientation. BecauseMnBi is faceted,
branchingseemsto occurwith considerabledifficulty. Consequently,we hypothesizethat the
microstructurelagsbehindthevelocity changeuntil thefreezingratebeginsto decrease.With a
decreasingfreezingrate,thesystemwants_,to increase.This is probablyaccomplishedby theBi
matrix growing aroundand pinchingoff fibers. Apparently,in the Mn-Bi systemthis occurs
morereadily thandoesbranching. The neteffectof this mechanismwould be to yield a _,that
alwaysexceedsthevalueexpectedfor theaveragefreezingrate.

RegelandWilcox [1,2]alsoproposedthat fiber branchingis easierthanfiber termination
in somesystems.Theytook asanexamplefibers that extendout in the melt a long distancein
front of the matrix. This could explain why, for one fibrous eutectic, _, increasedwhen
solidificationwascarriedout in space.Theyobservedthat theabovemechanismis probablynot
relevant to lamellar eutectics,for which _, adjustsby propagationof faults. Previouswork
showedthat solidification in microgravity and use of ACRT had no influence on the k of
lamellareutectics.However,solidification is no longerat steadystatewhenthe freezingrate is
fluctuating.Consequently,the volume fractionsof thetwo phasesand their averageinterfacial
undercoolingmaydepartfrom steadystatevalues.

Thus,the resultsof LarsonandPirich arenot surprising,but cannotbeunderstoodusing
steadystatetheories. A quantitativetheoryof oscillatoryfreezingis neededfor comparisonwith
experiment.Therewasnodirectly relatedprior work on this subject. Therehavebeenanumber
of workson themorphologicalstabilityof lamellareutectics.

Linearanalyticalanalysesand numericalsolutionshavebeencarriedout to find out the
stability of a freezing interface subjectedto perturbations. Hurle, Jakemanand Pike [17]
investigatedtheeffectof sinusoidaltemperaturevariationsin the melt on the growth of a single-
phasecrystal.They solvedthe concentration-diffusionand heat-conductionequationsfor both
solid and liquid phasesin linear approximationin 1 dimension. They imposeda sinusoidal
temperatureperturbationof frequencycoat theedgeof thethermalboundarylayeradjacentto the
advancingphaseboundary. The responseof the temperatureand concentrationat the interface
was calculated.The authorsshowedhow thesequantitiesvary with frequencyfor material
parametersappropriateto metalsandsemiconductors.

Wilson [18] investigatedthe quantitative relationshipbetweenperiodic variations in
growth rate and compositional inhomogeneitiesin single-phase crystals grown by the
Czochralski technique.Using an extensionof the Burton-Prim-Slichter model, she solved
numerically the Navier-Stokesequation,the continuity equation and the diffusion equation.
Thesecalculationsindicatedthat the concentrationcycle at the interfacelags the growth rate
cycle. The generalform of theparametricdependenceof thephaselag wasnot obtained. It was
only notedthat,becauseof thephaselag effect,theconcentrationprofile is non-symmetricabout
its maxima and minima. The time-dependentvariation in concentrationin the melt at the
interfacewasestablished.

Wheeler[19] alsousedalinearstabilitytheoryto studytheeffectof anoscillatorygrowth
rateon themorphologicalstability of acrystalgrowingfrom abinaryalloy in 2 dimensions.The

10



oscillatorycomponentwasassumedto be lessthantheaveragefreezingrate,andthesolute
diffusivity in solid phasemuchlessthenin liquid phase.

Until now,nocalculationshadbeendonefor a eutecticsystem,eitherlamellar(2-
dimensional)or fibrous (3-dimensional),with afluctuatingfreezingratecausedby temperature
oscillationsin themelt.

METHODS

Analytical methods seemed to be inappropriate for this problem. Even if the governing

equations for temperature and composition fields are uncoupled, there is a time-dependent

freezing rate, which makes the problem non-linear. A numerical solution can be compared either

with simplified analytical models or with an order-of-magnitude analysis.

One-sided sharp interface model

The choice of a numerical method to solve this problem is based mainly on the results

one wants to accomplish. For moving interface problems, the dilemma is in the interface

approximation. If only the bulk of the phase is of interest, then the interface is approximated by a

surface (line in a 2-dimensional case) in the mathematical sense, i.e. with zero width. The

equations in the bulk can be easily discretized even in a very complicated geometry. Domain

decomposition methods have been extensively used to study the cellular growth problem [20,21].

However, the method still relies partially on domain transformation (mapping), which is hardly

applicable for highly contorted interfaces. The effectiveness of the method is diminished by the

necessity of periodic reconnection of grids and consequent interpolations, which may result in

numerical diffusion. Their formulation is akin to the method proposed by Shyy et al. [22]. A

deficiency in these methods is their inability to describe the interface. The dynamics of the

interface is controlled only by the change of field variables in the bulk, but not at the interface
itself.

We consider a system of two-dimensional elliptic equations which describe the evolution

of concentration and temperature field in three-phase two-component media. Having assumed

that in the solid phases the thermal diffusivities are equal and the mass diffusivities O, we end up

with a system of three differential equations describing concentration evolution in the liquid

phase and temperature evolution in the solid and liquid phases. Here, we are assuming that the

solid/liquid interface is planar for each phase, but the phases can have different kinetics of

propagation. Initially, for simplicity we assumed that the growth velocity is the same for both

phases. The interface propagates in the z-direction, with the x-direction being the direction of

eutectic structure periodicity. The equations are coupled by means of boundary conditions

applied at the propagating solid/liquid interface.

The relevant physical scaling for this problem, where the mass diffusion plays an

important role, can be assessed by introducing the average growth rate V0, mass diffusivity D and

eutectic structure parameter:

_ D ~ _ - D o:L [ as solid

= _ = -- • __ _. _ = I_L

Z ZVo ; x x 2 , t=tv_ ; Le ; N (1)
D 1 liquid

2D . _0, lamellar structure

lA = Vo,_ , B= 1, rod structure

The non-dimensional equations then have the form:

11



3C 32C __A2 32C 1 3C
_'{ - _Z" _x 2 + BA2

3T _2T _2T 1 _T
NLe _-=-= + NLeA 2 NLeBA 2-Yf- ÷ :x

(2)

Since the thermal and mass boundary layers are quite different for growth from the melt, we use

a transformation of variables. This is done in order to be able to distinguish the weak variations

of solute concentration at the interface and to have the whole thermal boundary layer in the

computational domain without increasing the number of computational elements. We use the
transformation:

r/= 1- exp{

The Jacobian of the transformation ha

J

The governing equations become:

; ;
the form:

'1 0 !1
0 T0-r/)

0 -7,

r = F (3)

(4)

3C 2(1 r/)2 _2C c)C A2 _2C 1 3C
-_-'V =7 - -- + [I"'f- 7'z ](1-r/)-_-_-O0+_rl2 -ff-_+ BA2 ¢ O_

(5)

_T NLeT" (1 - rl)z O2T + t't)" LeT 21, rl)-_O= -- - - + NLeA2 -_T + NLeBA2

where equation (5) for the temperature has to be solved in both liquid and solid phases.

One limitation of the above method is that when the interface becomes highly branched,

the generation of a boundary-conforming grid is a very difficult task. Furthermore, in the event

of topological changes, such as a merger or break-up of the growth interfaces, the boundary fitted

grid has to be rearranged. Thus, there is a need to 'decouple' the motion of the interface from

the grid motion.

There are three primary restrictions on interface tracking. First, there is the possibility of

fragmentation or merger of interfaces. The generation of a body-fitted grid is useless in this case.

Second, the function describing the interface needs to be obtained very accurately, since

inaccuracy leads to large errors in the first and second derivatives that are used in the domain

transformation. The boundary conditions need to be imposed at the exact location of the

interface separating the two phases.

Phase-field model

In order to be able to track the interface dynamics, and mainly the region of three phases

(liquid and two solid phases) in the eutectic solidification problem, we initially chose the phase-

field method. The general approach of the method is a non-equilibrium Cahn-Hilliard [23]

diffuse representation of the interface coupled to a diffusion equation. The ideas of Fix [24]

were to replace the dynamics of the boundary by an equation of motion for the phase-field, an

order parameter that changes from one value to another quickly but smoothly at the two-phase

interface. In other words, the phase-field model is a phenomenological model of phase

transitions that can be described by a non-conserved scalar order parameter coupled to a

conserved non-critical scalar (thermal, concentration) field(s).

The phase field _ is governed by a partial differential equation that guarantees that (in the

limit of infinitely thin interface region) the appropriate boundary conditions at the crystal/melt

12



interface are satisfied. One solves the coupled equations for the phase field and transport

equations (temperature and/or composition). The advantage of the phase-field formulation of

solidification is that no distinction is made between the solid, liquid, and interface. This allows

the whole domain to be treated in the same way numerically. The interface is not tracked but,

rather, is given implicitly by a scalar function of space and time. This scalar function is called

the phase field parameter. This approach readily allows computation of the evolution of

interfacial structures, but at the expense of computer time. (We are immensely grateful to

Barbara Facemire for arranging the use of the supercomputer at Marshall Space Flight Center for
these computations.)

Let _(r,t) be the phase-field parameter, a function of the space variable r within a finite

volume, and time c Its evolution equation in the Ginzburg-Landau approach is:

where "_is an interface kinetic coefficient and F is the Helmholtz free energy. This equation sets

the microscopic time scale for order-parameter relaxation and assumed to be independent of _.

Hereafter, we assume that there is no volume change in the system subjected to the phase

transition dynamics. Everything holds at constant pressure.

The free energy is chosen to have two minima, corresponding to two definite phases at

equilibrium. It is represented by the Cahn-Hilliard [23] term g(q_) and a non-equilibrium driving

term f0(_), which is the bulk free energy density and is phase-dependent:

fn, [Tg(q_) + fo(_)]d=? (7)F(¢)

The term g(¢) is given by the Taylor expansion about the free energy density of the uniform

phase-field in an isotropic medium:

g(_) = go (4) + _- (V_0) 2 (8)

Therefore, the representation of the free energy density in the Cahn-Hilliard form (23) reveals

that the free energy density can be expressed as the sum of two contributions: one for the

homogeneous phase and the other (gradient energy) as a function of the local properties. The

local form of go must have two quadratic minima, corresponding to the two different phases, i.e.

the two different values of_. We took _ in the minima to be (-1,1). In this case, go is defined by

g0(¢)=(1/4) W (1-¢z) 2 in the Landau-Ginzburg model. The form of go is a double-well potential,

as used by Cahn and Hilliard.

For a eutectic alloy we must choose another phase field parameter to be able to differ not

only between solid and liquid, but also between the two solid phases [25]. The phases are

defined in such a way that:

Ot- phase qb= -1 III = 1

fl - phase _ = - 1 _ = - 1

liquid phase _ = 1 1V- undefined

(9)

We let the mole fraction of component-1 in the parent phase 2 be x. The free energy

density of the solution was taken to be phase- and composition-dependent. It describes the

change in free energy density in the range of two pure components at thermodynamic equilibrium

(solid or liquid phase):

13



f (¢,q_,x,T) = RT [xlnx + (1- x)ln(1- x)]
Vrn

-(1- h(O)){h(_/)[xF_(r)+ (1- x)F2 (T)]+ (l- h(v/))[xff (T) + (1 - x)F2 (T)_ (lO)

+

where h(O), h(_), g(qb) and g(gt) are polynomial functions of the phase-field. In equation (10), R

is the universal gas constant and Vm is the molar volume (assumed to be constant and the same

for both components. The first term is the free energy density associated with the mixing of two

components assuming an ideal solution. The F in the second two terms are associated with the

energy density due to individual Helrnholtz free energy density of the pure components:

F_a(T) = AHIII-_I ];F?(T) = AH2(1- T_2 ] (11)

where AHi is the latent heat (enthalpy of fusion) of pure component i and Ti is its melting point.

We also assumed for simplicity that the interface properties, i.e. the interface free energy _ and

the effective width 8 of the interface are weak functions of composition. This means that the

phase-field parameters are also independent of composition field. The same concerns the

relaxation parameter 'r. The phase-field parameters, 8 and W, and the relaxation parameter 'r, are

related to the interfacial energy o, the interface thickness 8, and the interface mobility Ia by:

_;W = 30" 3-v/-2o'o_r

e = 2.v/_ _-;'r- _ (12)

For simplicity, we used the relaxation parameter at the eutectic temperature T=TE. The free

energy difference between the phases (for pure solids) is in the excess free energy of phase

transformation, and is directly related to the latent heat. The evolution equations for the phase

field, composition and enthalpy are given by:

D

at ,_

o31// 1

at ly

1 _F(¢,_,x,T)-

r

1 (SF(dp,N,x,T)

T 81//
(13)

-g-=

-g=
where _"='r/T_, H is the enthalpy, D(d_) is the mass diffusivity of the two component solution,

and K(_,_) is the thermal conductivity. The values of these quantities are different for solid and

liquid, i.e. phase-dependent. However, we assumed that the thermal conductivity is the same for

both liquid and solid phases, i.e. K(_,_) =K. On the other hand, there is a large difference

between the solute diffusivities in the solid and the liquid. This means that D depends on the

order parameter _. The simple form for solute diffusivity was used:

D(_)= h((_)Dtiquid + (1- h( dp))O,o_ d (14)
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RESULTS

One-sided sharp interface model

Initially, the freezing rate has been specified. (Later we will calculate it as part of the

problem.) The temperature distribution was ignored completely, as well as its effect upon

physical parameters such as viscosity. The fluid flow through the interface due to growth was

accounted for by assuming it fluctuates about the average value. Following the Jackson-Hunt

analysis [26], the concentration at the freezing interface in the melt was averaged over the

interface area of each phase. Calculations were done for the three eutectic systems shown below.

Systems used

System

for initial calculations with an oscillator:

Type X_ut X. (13)

Cd - Zn lamellar

Pb - Sn lamellar

TeUt,

C

266

183

rod 262 0.978

0.266 0.0435 0.9875

flanar freezing front.

m_,, m B, T_, C

K/at.frac K/at.frac

0.739 0.29 0.986 395 136

-1 415-0.5

T_, C

MnBi-Bi

312 419

327 232

218 271

Solution of the first equation in (5) gives the interfacial melt concentration, which varies with

time. These oscillations of concentration propagate into the bulk of the melt with decaying

amplitude. The concentration maxima do not coincide with the maxima of the freezing rate, but

lag behind, with a phase difference between the oscillations in freezing rate and in concentration.

At high frequencies, the phase difference is several orders of magnitude higher than the inverse

diffusion time defined in (1). The concentration at the interface can be averaged separately for

each solid phase, yielding results as exemplified by Figure 1.

The spatially averaged concentration along the interface can be temporally averaged by

integrating over one period of freezing rate oscillations:
28

IC(t). V(t)dt

_-= o (15)
2_r

IV(t)dt
o

These doubly averaged concentrations reach constant values after a few periods of oscillations

(Figure 2). Similar to the one-dimensional oscillatory case, the difference between the averaged

concentration over each phase and its steady state value (without freezing rate oscillations) can

be expressed as:

AC(_,.,)=eIc M -Cmlcos(_) :e 2 C e - C(_.o)[f(¢o)cos(¢) (16)

where E is the amplitude of growth rate fluctuations, CM and Cm are the maximum and minimum

values of concentration variations respectively, ¢ is the phase lag between concentration and

freezing rate oscillations, and f(o_) is a weak function of the frequency dependence. The

frequency dependence of AC according to Equation (16) is shown in Figure 3 (solid markers).

The open markers show the difference between the spatially averaged concentration (Equation

(15)) and the steady state value for each phase. The difference between these estimations is 5-

10% of the offset value, due to time averaging of the concentration oscillations.
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Figure 1. The oscillating freezing rate and the spatially-averaged melt concentrations at the

and 13solid phases as a result of the solution of the first equation in (5).
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The average compositional undercooling ahead of the growing phase is equal to the liquidus

slope at the eutectic point times the difference between the average composition and the eutectic.

With the freezing rate oscillations applied, the melt ahead of a phase becomes more depleted in

the growth component than in the absence of oscillations. To estimate the excess undercooling

due to freezing rate oscillations ahead of the growing phase, it is sufficient to know the liquidus

slope m_ (i=ot,13) and the difference of the average composition from the eutectic. Two situations
are revealed:

1. [Ca-CEI < [CcCEI and m > m_. Since AC_ -

undercoolings AT -- AT_ (Diagram 1).

2. ]Ca-CE[ < [CI3-CEI and m_ < m_. Since AC_ -

undercoolings AT << AT_ (Diagram 2).

[C,_-CEI and AC_ - ICI3-CE[, the excess

IC,_-CE[ and AC_ - ICcCEI , the excess

I nag'am1 I

c_

iATa

The average compositional undercooling at the freezing interface varies with the oscillation

frequency, and reaches a constant value as frequency is increased. The value of the frequency at

which the undercooling becomes constant is proportional to the inverse diffusion time connected
with lateral diffusion.

Phase-field model

First, we tried to achieve the necessary accuracy in calculating the concentration in the

bulk of the phases, still providing a correct solution for the interfacial region. We solved (13) for

one solid phase only, in 1 dimension and constant temperature. Neumann boundary conditions

were imposed at the boundaries for the phase-field and mass transport equations. Dirichlet

boundary conditions were implemented for heat transport. An explicit Euler scheme was used

for time integration.

To find the equilibrium solid and liquid concentrations (exact solutions), we used the

criteria for the chemical potentials in the two-component, 2-phase system:

I
- Is-x °Y l =

&Ix, &xL

(17)

The first equation in (17) guarantees that at equilibrium the difference in chemical potentials

between the two components in one phase is the same as in the second phase. The second

condition is that the chemical potential for each component must be the same in both phases.
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Thesetwo equationsarebothnecessaryandsufficientfor asolutionto exist. Here:

In xL - Ab-_lVr" 1 -- X L -- AF2v m
;In (18)

x s RT 1-x s RT

which represents the system of coupled nonlinear equations for Xs and XL. This system can be
solved analytically [27] and results in:

l+ex  )
XL = exl_ Al_lvm)_exD( AF2vml ;xs =

Rr ) Rr )

_ 1+ exp(AFzv,, ))exl_r Ab]lv,, ")

Rr )) RrA

Rr )
(19)

The following results from the numerical computations were compared to exact solutions (19).

In the first try, the simplest form of the finite-difference approximation to the governing

equations was chosen, first-order central differencing. The first-order central difference uses the

following representations of the first and second derivatives for the composition:

dx _ xi+ _ - xi_ _ . d2x _ xi+ 1 -- 2x i + Xi_ _

dz 2Ax , dz 2 Ax 2 (20)

The calculations were carried out for several values of temperature. The results are summarized
below.

First-order central difference results

T,K

610

650

800

1000

1100

1150

1200

1230

Xs

exact

XL

exact

XS

calcul.
XL

calcul.

dxs

error%

dXL

error%

k

exact

0.9772 0.9926 0.9065 0.9678 -7.24 -2.50 0.984

0.8917 0.9597 0.8350 0.9350 -6.36 -2.57 0.929

0.6249 0.7936 0.6013

0.3348

0.2032

0.3278

0.7768

0.4885

0.3105

0.4805

-3.77

2.13

0.2894

-2.12

1.67

0.1874

0.787

0.682

8.43 7.29 0.648

0.1176 0.1858 0.1374 0.2142 16.83 15.29 0.633

0.0477 0.0770 0.0746 0.1187 56.41 54.16 0.620

0.0056 0.0092 0.0153 0.0246 173.21 167.39 0.613

k dk

calcul error

%

0.938 -4.85

0.893 -3.89

0.774 -1.69

0.685 0.47

0.654 1.07

0.642 1.34

0.629 1.37

0.624 1.83

The error estimate for Xs and XL was made by the formula:

xs(calculated) (exact) XL(Calculated) (exact)
&s = -Xs 100% ; &L = --XL 100% (21)

XS(exact ) XL(exact)

The same formula was used for the calculation of the error in segregation coefficient k, where

k(exact) _ Xs (exact) , k(calcutated) __ XS (calculated)

XL(exact ) , XL(Calculated) (22)

The estimates for the solidus, liquidus, equilibrium concentrations and segregation coefficient

show relatively large errors, especially near the melting points of the pure components (600 and

1234 K).

In order to improve the accuracy of the numerical result, second order central differencing

was also implemented. The second-order central difference uses the following representations of

the first and second derivatives for the composition:
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dx = -xi. 2 + 8xi+ _ - 8xi_ l + x__ 2 . d2x

dz 12zXx ' dz 2

These results are summarized below.

--Xi+ 2 "_ 16x,+_ - 30x, + 16xi_ 1 - x,_z

12zSx 2
(23)

Second-order central difference results.

T, K Xs

exact

610

650

800

1000

1100

1150

1200

1230

XL

exact
Xs

calcul.
XL

calcul.

dxs

error%
dXL

e_or%

k

exact

49772 0.9926 0.9656 0.9888 _i.19 -0.38 0.984

0.8917 0.9597 0.8893 0.9588 -0.27 -0.09 0.929

0.79360.6249

0.4805

0.6240

O.3279

0.1879

0.3278

0.7930

0.4806

0129020.1874

-0.14

0.03

0.27

-0.08

0.2894

0.02

0.28

0.787

0.0092

0.682

0.648

0.1176 0.1858 0.1184 0.1869 0.68 0.59 0.633

0.0477 0.0770 0.0487 0.0789 2.10 2.47 0.620

0.0056 0.0059 0.0096 4.64 3.91 0.613

k dk

calcul e_or

%

0.977 -0.80

0.928 -0.17

0.787 -0.06

0.682 0.02

0.648 0

0.634 0.08

0.620 0.05

0.613 0.02

The accuracy of the calculations was dramatically improved, especially for temperatures close to

the melting points of the pure components. We used 300 grid points in the calculations. Any

further increase in the density of grid points seemed to be unnecessary, as seen by comparison of

the accuracy of calculations for 100, 200 and 300 grid points. Figure 4 shows how the

concentration takes equilibrium values in liquid and solid phases, satisfying equation (13) for the

phase field _ and concentration x for T=1000 K. Superscript 'ini' in the figure denotes the initial

value of solute concentration (assumed constant), and superscript 'eq' means the equilibrium
solution.

After equilibrium conditions had been obtained, the temperature at the solid end of the

computational domain (where _ = -1) was lowered, and the temperature of the liquid end was

increased. Equilibrium conditions were reached at T = 1200 K. The temperature at the solid end

was set to 1198 K, and at the hot end to 1202 K, which gave us a temperature gradient of 100

K/cm (with the length of the computational domain being 0.04 cm). This temperature gradient

had to be imposed after the transient process was over. Unfortunately, transient calculations take

a long time, so we did not obtain the equilibrium solution. The interface velocity first increases

after the temperature is relaxed, then decreases in time approximately by the law t-1/2. The

concentration at the interface first increases, then begins to decrease, since the freezing rate

decreases. When the concentration had almost reached the equilibrium value, the temperature at
the hot end of the domain was changed to:

T- ho, _( dT _¢(1
-- Tinitial _ dt) + e sin(cot)) (24)

thus specifying an oscillating temperature at the end of the computational domain. Being

coupled with the equation for the phase-field parameter and concentration, the time-dependent

temperature causes a similar response in the evolution of the phase-field parameter (Figure 5,a,c)

and concentration (Figure 5,a,b). The evolution of the phase-field parameter, which looks like a

step-function in Figure 5a, determines the dynamics of the boundary. The lines in Figures 5a,c

are moving from left to right. The space between these lines is proportional to the velocity of the

boundary. In other words, the evolution of the phase-field parameter gives the boundary velocity

in the laboratory reference frame. The concentration close to the interface increases with time,
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trying to recoverthe classicalexponentialprofile aheadof a moving interface. Disregardingthe
oscillations,the velocity of the moving interfacefirst increases,whenwe startedto lower the
temperatureby the law (24). The freezingratetendsto a constantvalue as the concentration
profile approachesthestationarysolution.

We applied the Fourier collocation and Fourier Galerkin methodsto phasetransition
problemsin two dimensionsusingthephase-fieldmodel. Thesemethodswerechosenin orderto
beableto describenaturallythe temporalevolutionof periodicstructuressuchaseutectics.The
application to a modified Stefan problem and interphaseboundarymotion driven by mean
curvaturewere chosenbecausetheir phase-fielddescriptionhasreceivedmuch attentionfrom
both mathematicaland computationalpoints of view. Thesephasetransition problemswere
modeledin a two-dimensionalperiodic shell with no boundaryconditionsappliedexplicitly to
the governingequations. The periodicity of the structure in two dimensionsallows us to
decreasethe computationaldomain,e.g. L = _ut., where_,t. is the interlamellaror interrod
spacing. We have submitteda paper for publication on the Fourier collocation and Fourier
Galerkinmethodsin thephase-fieldmodel [27].

We appliedthe conceptsdescribedin Methodsto two-dimensional,three-phaseeutectic
solidification. Now thefreeenergydensitycorrespondingto the stablephases(solid andliquid)
taketheform:

ft. = RT [xlnx +(1- x)ln(1-x)]
v,,

f" = RT[xlnx + (1- x) In(1 - x)]- (Ab]_x + AFz_ (1- x)) (25)
v,,

ftJ = RT[xln x + (1- x)In(1 - x)]- (Ak_tt3x+ AF2_ (1- x))
v,,

Here F2 _ and Fi _ were derived using Maple to satisfy the eutectic composition, temperature, and

terminal solid composition of both solid phases. The free energy density for each phase at the

eutectic temperature is shown in Figure 6. The free energy densities for the solid phases are

written with respect to the liquid phase assuming constant heat capacity for all three phases. We

solved the system of equations (13) for an initial gradient of temperature between the boundaries

of computational domain in growth direction. The eutectic structure adjusts so that the growing

interface is in the region of eutectic temperature. Figure 7 shows the slow dynamics of the

eutectic structure near the equilibrium position after the temperature field was relaxed. Since the

thermal diffusivity is much larger for all phases than the mass diffusivity, the temperature field

relaxes almost instantly in the mass diffusion time scale. The 13 phase (dark) corresponds to

small values of concentration x, in agreement with the free-energy curves. In the liquid (gray),

the concentration takes intermediate values between the o_- and 13-phases. The inset of Figure 7

shows the contours of the phase-field parameter _ corresponding to the solid/liquid transition.

The middle contour line is _=0. The [3-phase protrudes into the liquid phase farther than the o_-

phase, having the larger curvature besides. Since the growth is coupled, the curvature of the 13-

phase tries to compensate for the large compositional undercooling which appears due to the

large composition difference (XL-X_) between the bulk liquid and 13. The freezing rate slows as

the system approaches equilibrium. The phases slowly adjust their volume fractions as they

move in the temperature gradient. The interface shape and the composition field ahead of the

interface are in agreement with Jackson-Hunt speculations [26].
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PLANS

One-sided sharp interface model

The one-sided model without a temperature field has several shortcomings. The velocity

of the moving boundary (the freezing rate) has to be specified. The phases cannot adjust their

relative positions. Although the increased undercooling at the interface due to freezing rate

oscillations may cause branching of fibers, since the phases are forced to freeze at the same rate,

we cannot find which process dominates: branching or termination by overgrowth of the fibers

by the matrix. The kinetic undercooling is not consistent with a specified freezing rate.

At present, we are in the process of solving the full system including heat conduction.

After the temperature field is obtained, we will set a criterion for nucleation of a branch on a

fiber. This nucleation will compete with the ability of the fiber to grow ahead of the matrix. If

small undercooling is required for nucleation, then the phase will branch and the eutectic

parameter 3, will change. Otherwise, one of the phases can protrude in the melt until the criterion

for constant growth rate for both phases is reached. No change in 3, can result in this case.

Phase-field model

In the phase-field method the steps that were undertaken for the 1-dimensional, 2-phase

model should be done for the 2-dimensional, 3-phase eutectic solidification. It may be

impossible to completely reach steady-state because the computations require enormous CPU

time. To save time, when we determine how the volume fractions adjust when the freezing rate

slowly approaches its steady value, we can perturb the freezing by switching on a fluctuating

temperature at the hot end of our computational domain. The temperature fluctuations will result

in freezing rate and concentration field fluctuations, which will change the eutectic morphology.
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DIRECTIONAL SOLIDIFICATION OF AI-Si EUTECTIC

Ramanathan Ramnarayanan

Abstract

The objective of this project is to determine the influence of convection on the

microstructure of the AI-Si eutectic. Work began in September 1997 with a literature review.

Alumina crucibles encapsulated in quartz were determined to be the most suitable for these

experiments and these materials have been purchased. Two Bridgman-Stockbarger furnaces

were investigated for use, and one was selected that will permit accelerated crucible rotation for

stirring of the melt during solidification. We are in the process of preparing the eutectic alloys

and making the growth ampoules.

INTRODUCTION

AI-Si alloys provide 90% of all shaped castings. The reason for its wide acceptance is the

attractive combination of its properties such as high corrosion resistance, low coefficient of

thermal expansion, fatigue resistance, machinability and good castability. AI-Si alloys have been

used for automotive pistons and in the aerospace industry. This system is a faceted-nonfaceted

eutectic, so hopefully an understanding of its growth behavior can be extended to other systems

of similar structure. Models and theories have been proposed relating to the growth mechanism

and effect of freezing rate and impurity modification on the A1-Si eutectic [28-34].

We will study the influence of convection during solidification on the microstructure of

the A1-Si eutectic. A Bridgman-Stockbarger apparatus was selected in which the furnace is

moved slowly downward and the ampoule can be rotated about its axis.

METHODS

We encapsulate 6mm ID alumina tubes filled with charge in a 10mm 113 quartz tube after

cleaning both tubes, and alternately evacuating and backfilling with Ar+H2 (10%).

The charge consists of AI-Si (12.6%) by weight. Aluminum shot of diameter 3-5 mm and

99.999% pure will be used. Aluminum contains native oxide which we propose to remove by

heating the shot with a solution containing 20g pure chromic acid powder, 35 cm 3 phosphoric

acid in 1 liter at 80°C for 1 hr, rinsing with deionized water, drying prior to weighing, and filling

the alumina tube. Silicon contains native oxide and some surface impurities which are removed

using commercial SC1 solution, rinsing in deionized water, 10%HF for 4 min, rinsing, and

drying prior to weighing and filling the alumina tube.

RESULTS

Two Bridgman-Stockbarger apparatuses were investigated for their suitability for the

present experiments. We profiled the smaller furnace, used by Fengcui Li for MnBi-Bi, with a

K-type thermocouple placed inside a quartz tube of 10 mm ID at three different hot and cold

zone temperatures. The results stimulated the following improvements:

1. More insulation was added to the sides to reduce heat loss.

2. A top cover of Fiberfrax insulation was used during profiling to reduce heat loss.
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3. The bottom portion of the furnacewasfitted with a Mullite tubeand a pieceof Fiberfrax to
preventair draftsthatmight inducetemperaturevariations,to preventtilting of the ampoule,and
to reducethechimneyeffect.

A largerBridgman-Stockbargerapparatuswas testedand found to be more suitablefor
the plannedexperiments. The fumace is moved rather than the ampoule, thus reducing the
effectsof mechanicalvibration on thefreezingprocess.The ampouleis held from belowby a
supportthatcanbe rotatedto about100rpm, thuspermittinguseof acceleratedcruciblerotation
to induceconvectionin themelt.

PLANS

A ceramic separator with a smaller diameter hole may be placed between the top and

bottom furnaces constituting the Bridgman-Stockbarger apparatus, in order to provide better

control of the freezing interface position. A temperature profile will be obtained by insertion of a

thermocouple from above. A support for the growth ampoule will be fabricated from quartz.

The A1-Si mixture will be mixed by heating in the growth furnace to above the eutectic

temperature, and applying accelerated crucible rotation for a day prior to beginning a
solidification run.

After choosing suitable control settings for the top and bottom fumaces, we will grow the

eutectic at different growth rates, with and without application of accelerated crucible rotation.

The microstructure will be determined by optical microscopy and scanning electron microscopy.

The microstructure will be analyzed by commercial image processing software like Adobe

Photoshop ® and HLImage++97®.
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